Solve : \(\sqrt{3} cos \theta\) + \(sin \theta\) = \(\sqrt{2}\)
Solution : We have, \(\sqrt{3} cos \theta\) + \(sin \theta\) = \(\sqrt{2}\) ………….(i) This is of the form \(a cos\theta\) + \(b sin \theta\) = c, where a = \(\sqrt{3}\), b = 1 and c = \(\sqrt{2}\). Let a = \(r cos\alpha\) and b = \(r sin\alpha\). Then, \(\sqrt{3}\) = …
Solve : \(\sqrt{3} cos \theta\) + \(sin \theta\) = \(\sqrt{2}\) Read More »