mathemerize

Prove that cos A cos (60 โ€“ A) cos (60 + A) = \(1\over 4\) cos 3A.

Solution : We have, L.H.S = cos A cos (60 โ€“ A) cos (60 + A) \(\implies\) L.H.S = cos A (\(cos^2 60 โ€“ sin^2 A\)) [ By using this formula, cos (A + B) cos (A โ€“ B) = \(cos^2 A\) โ€“ \(sin^2 B\)ย  above ] \(\implies\) L.H.S = cos A (\(1\over 4\) โ€“ โ€ฆ

Prove that cos A cos (60 โ€“ A) cos (60 + A) = \(1\over 4\) cos 3A. Read More ยป

Prove that sin A sin (60 โ€“ A) sin (60 + A) = \(1\over 4\) sin 3A.

Solution : We have, L.H.S = sin A sin (60 โ€“ A) sin (60 + A) \(\implies\) L.H.S = sin A (\(sin^2 60 โ€“ sin^2 A\)) [ By using this formula, sin (A + B) sin (A โ€“ B) = \(sin^2 A\) โ€“ \(sin^2 B\)ย  above ] \(\implies\) L.H.S = sin A (\(3\over 4\) โ€“ โ€ฆ

Prove that sin A sin (60 โ€“ A) sin (60 + A) = \(1\over 4\) sin 3A. Read More ยป