What is the Formula of Tan (A + B + C) ?
Solution : The formula of tan (A + B + C) is \(tan A + tan B + tan C โ tan A tan B tan C\over 1 โ tan A tan B โ tan B tan C โ tan C tan A\). Proof : We have, tan (A + B + C) = tan((A โฆ
Solution : The formula of tan (A + B + C) is \(tan A + tan B + tan C โ tan A tan B tan C\over 1 โ tan A tan B โ tan B tan C โ tan C tan A\). Proof : We have, tan (A + B + C) = tan((A โฆ
Solution : The formula of cos(A + B + C) is cos A cos B cos C โ sin A sin B cos C โ sin A cos B sin C โ cos A sin B sin C. Proof :ย We have, cos (A + B + C) = cos ((A + B) + C) โฆ
Solution : The formula of sin (A + B + C) is sin A cos B cos C + cos A sin B cos C + cos A cos B sin C โ sin A sin B sin C. Proof :ย We have, sin (A + B + C) = sin ((A + B) + โฆ
Solution : We have, cos (A + B) cos (A โ B) = (cos A cos B โ sin A sin B) (cos Aย cos B + sin A sin B) = \(cos^2 A cos^2 B\) โ \(sin^2 A sin^2 B\) = \(cos^2 A (1 โ sin^2 B)\) โ \((1 โ cos^2 A) sin^2 B\) โฆ
Prove that cos (A + B) cos (A โ B) = \(cos^2 A\) โ \(sin^2 B\) Read More ยป
Solution : We have, sin (A + B) sin (A โ B) = (sin A cos B + cos A sin B) (sin Aย cos B โ cos A sin B) = \(sin^2 A cos^2 B\) โ \(cos^2 A sin^2 B\) = \(sin^2 A (1 โ sin^2 B)\) โ \((1 โ sin^2 A) sin^2 B\) โฆ
Prove that sin (A + B) sin (A โ B) = \(sin^2 A\) โ \(sin^2 B\). Read More ยป
Solution : The formula of cot (A โ B) is \(cot A cot B + 1\over cot B โ cot A\). Proof :ย We have, cot (A โ B) = \(cos (A โ B)\over sin(A โ B)\) Using sin (A โ B) and cos (A โ B) formula, cot (A โ B) = \(cos A cos โฆ
Solution : The formula of cot (A + B) is \(cot A cot B โ 1\over cot B + cot A\). Proof :ย We have, cot (A + B) = \(cos (A + B)\over sin(A + B)\) Using sin (A + B) and cos (A + B) formula, cot (A + B) = \(cos A cos โฆ
Solution : The formula of tan (A โ B) is \(tan A โ tan B\over 1 + tan A tan B\). Proof :ย We have, tan (A โ B) = \(sin (A โ B)\over cos(A โ B)\) Using sin (A โ B) and cos (A โ B) formula, tan (A โ B) = \(sin A cos โฆ
Solution : The formula of tan (A + B) is \(tan A + tan B\over 1 โ tan A tan B\). Proof :ย We have, tan (A + B) = \(sin (A + B)\over cos(A + B)\) Using sin (A+ B) and cos (A + B) formula, tan (A + B) = \(sin A cos B โฆ
Solution : The value of cosย 15 degrees is \(\sqrt{3} + 1\over 2\sqrt{2}\). Proof : We will write cos 15 as cos (45 โ 30). By using formula cos (A โ B) = cos A cos B + sin A sin B, cos (45 โ 30) = cos 45 cos 30 + sin 45 sin 30 โฆ