mathemerize

Find the Value of Sin 15 Degrees ?

Solution : The value of sin 15 degrees is \(\sqrt{3} – 1\over 2\sqrt{2}\). Proof : We will write sin 15 as sin (45 – 30). By using formula sin (A – B) = sin A cos B – cos A sin B, sin (45 – 30) = sin 45 cos 30 – cos 45 sin …

Find the Value of Sin 15 Degrees ? Read More »

What is the Formula of Cos(A – B) ?

In this post you will learn what is the formula for cos (A – B) with examples. Cos (A – B) Formula : The formula of cos(A – B) is cos A cos B + sin A sin B. Example : If sin A = \(3\over 5\) and cos B = \(9\over 41\), find the …

What is the Formula of Cos(A – B) ? Read More »

What is the Formula of Cos(A + B) ?

In this post you will learn what is the formula for cos (A + B) with examples. Cos (A + B) Formula : The formula of cos(A + B) is cos A cos B – sin A sin B. Example : If sin A = \(3\over 5\) and cos B = \(9\over 41\), find the …

What is the Formula of Cos(A + B) ? Read More »

What is the Formula of Sin(A – B) ?

In this post you will learn what is the formula for sin (A – B) with examples. Sin (A – B) Formula : The formula of sin(A – B) is sin A cos B – cos A sin B. Example : If sin A = \(3\over 5\) and cos B = \(9\over 41\), find the …

What is the Formula of Sin(A – B) ? Read More »

What is the Formula of Sin(A + B) ?

In this post you will learn what is the formula for sin (A + B) with examples. Sin (A + B) Formula : The formula of sin(A + B) is sin A cos B + cos A sin B. Example : If sin A = \(3\over 5\) and cos B = \(9\over 41\), find the …

What is the Formula of Sin(A + B) ? Read More »

Prove that 1 + \(cot^2 \theta\) = \(cosec^2 \theta\).

Solution : In right angled triangle ABC, \(cosec \theta\) = \(AC\over BC\)  \(\implies\)   \(cosec^2 \theta\) = \(AC^2\over BC^2\) \(cot \theta\) = \(AB\over BC\)  \(\implies\)   \(cot^2 \theta\) = \(AB^2\over BC^2\) \(\implies\) 1 + \(cot^2 \theta\) = 1 + \(AB^2\over BC^2\)  = \(BC^2 + AB^2\over BC^2\) = \(AC^2\over BC^2\) [ By Pythagoras theorem,  \(AC^2\) = \(BC^2 + …

Prove that 1 + \(cot^2 \theta\) = \(cosec^2 \theta\). Read More »

Prove that 1 + \(tan^2 \theta\) = \(sec^2 \theta\).

Solution : In right angled triangle ABC, \(sec \theta\) = \(AC\over AB\)  \(\implies\)   \(sec^2 \theta\) = \(AC^2\over AB^2\) \(tan \theta\) = \(BC\over AB\)  \(\implies\)   \(tan^2 \theta\) = \(BC^2\over AB^2\) \(\implies\) 1 + \(tan^2 \theta\) = 1 + \(BC^2\over AB^2\)  = \(AB^2 + BC^2\over AB^2\) = \(AC^2\over AB^2\) [ By Pythagoras theorem,  \(AC^2\) = \(BC^2 + …

Prove that 1 + \(tan^2 \theta\) = \(sec^2 \theta\). Read More »

Prove that \(sin^2 \theta\) + \(cos^2 \theta\) = 1.

Solution : In right angled triangle ABC, \(sin \theta\) = \(BC\over AC\)  \(\implies\)   \(sin^2 \theta\) = \(BC^2\over AC^2\) \(cos \theta\) = \(AB\over AC\)  \(\implies\)   \(cos^2 \theta\) = \(AB^2\over AC^2\) On adding, \(sin^2 \theta\) + \(cos^2 \theta\) = \(BC^2\over AC^2\) + \(AB^2\over AC^2\) \(sin^2 \theta\) + \(cos^2 \theta\) = \(BC^2 + AB^2\over AC^2\) = \(AC^2\over AC^2\) …

Prove that \(sin^2 \theta\) + \(cos^2 \theta\) = 1. Read More »

Ezoicreport this ad