By using binomial theorem, expand \((1 + x + x^2)^3\).
Solution : Let y = x + \(x^2\). Then, \((1 + x + x^2)^3\) = \((1 + y)^3\) = \(^3C_0\) + \(^3C_1 y\) + \(^3C_2 y^2\) + \(^3C_3 y^3\) = \(1 + 3y + 3y^2 + y^3\) = 1 + 3\((x + x^2)\) + 3\((x + x^2)^2\) + \((x + x^2)^3\) = \(x^6 + 3x^5 …
By using binomial theorem, expand \((1 + x + x^2)^3\). Read More »