Prove that \(f(\theta)\) = \({4sin \theta\over 2 + cos\theta} โ \theta\) is an increasing function of \(\theta\) in \([0, {\pi\over 2}]\).
Solution : We have, \(f(\theta)\) = \({4sin \theta\over 2 + cos\theta} โ \theta\) \(\implies\) \(f'(\theta)\) = \((2 + cos\theta)(4 cos\theta) + 4 sin^2\theta\over (2 + cos\theta)^2\) โ 1 \(\implies\) \(f'(\theta)\)ย = \(8 cos\theta + 4\over (2 + cos\theta)^2\) โ 1 \(\implies\) \(f'(\theta)\) = \(4\cos\theta โ cos^2\theta\over (2 + cos\theta)^2\) \(\implies\) \(f'(\theta)\) = \(cos\theta(4 โ cos\theta)\over โฆ