In \(\triangle\) ABC right angled at B, it tan A = \(1\over \sqrt{3}\), find the value of (i) sin A cos C + cos A sin C (ii) cos A cos C – sin A sin C
Solution : Consider a \(\triangle\) ABC, in which \(\angle\) B = 90 For \(\angle\) A, we have : Base = AB, Perp. = BC, and Hyp. = AC, tan A = \(\perp\over base\) = \(BC\over AB\) = \(1\over \sqrt{3}\) Let BC = k and AB = \(\sqrt{3} k, AC = \(\sqrt{{AB}^2 + {BC}^2}\) = 2k …