Find the number of solutions of tanx + secx = 2cosx in [0, \(2\pi\)].
Solution : Here, tanx + secx = 2cosxย ย ย ย \(\implies\)ย ย ย sinx + 1 = \(2cos^2x\) \(\implies\) \(2sin^2x\) + sinx โ 1 = 0ย ย ย \(\implies\)ย ย sinx = \(1\over 2\), -1 But sinx = -1 \(\implies\) x = \(3\pi\over 2\) for which tanx + secx = 2cosxย is not defined. Thus, sinx = โฆ
Find the number of solutions of tanx + secx = 2cosx in [0, \(2\pi\)]. Read More ยป