If y = 2[x] + 3 & y = 3[x – 2] + 5, then find [x + y] where [.] denotes greatest integer function.
Solution : y = 3[x – 2] + 5 = 3[x] – 1 so 3[x] – 1 = 2[x] + 3 [x] = 4 \(\implies\) 4 \(\le\) x < 5 then y = 11 so x + y will lie in the interval [15, 16) so [x + y] = 15 Similar Questions Find the …