If mean of the series \(x_1\), \(x^2\), ….. , \(x_n\) is \(\bar{x}\), then the mean of the series \(x_i\) + 2i, i = 1, 2, ……, n will be
Solution : As given \(\bar{x}\) = \(x_1 + x_2 + …. + x_n\over n\) If the mean of the series \(x_i\) + 2i, i = 1, 2, ….., n be \(\bar{X}\), then \(\bar{X}\) = \((x_1+2) + (x_2+2.2) + (x_3+2.3) + …. + (x_n + 2.n)\over n\) = \(x_1 + x_2 + …. + x_n\over n\) …