If \(log_e x\) – \(log_e y\) = a, \(log_e y\) – \(log_e z\) = b & \(log_e z\) – \(log_e x\) = c, then find the value of \(({x\over y})^{b-c}\) \(\times\) \(({y\over z})^{c-a}\) \(\times\) \(({z\over x})^{a-b}\).
Solution : \(log_e x\) – \(log_e y\) = a \(\implies\) \(log_e {x\over y}\) = a \(\implies\) \(x\over y\) = \(e^a\) \(log_e y\) – \(log_e z\) = b \(\implies\) \(log_e {y\over z}\) = b \(\implies\) \(y\over z\) = \(e^b\) \(log_e z\) – \(log_e x\) = c \(\implies\) \(log_e {z\over x}\) = c \(\implies\) \(z\over x\) = …