What is Scalar Triple Product – Properties and Examples
Let \(\vec{a}\), \(\vec{b}\), \(\vec{c}\) be three vectors. Then the scalar \((\vec{a}\times \vec{b}).\vec{c}\) is called the scalar triple product of \(\vec{a}\), \(\vec{b}\) and \(\vec{c}\) and is denoted by [\(\vec{a}\) \(\vec{b}\) \(\vec{c}\)]. Thus, we have [\(\vec{a}\) \(\vec{b}\) \(\vec{c}\)] = \((\vec{a}\times \vec{b}).\vec{c}\) For three vectors \(\vec{a}\), \(\vec{b}\) & \(\vec{c}\), it is also defined as : (\(\vec{a}\times\vec{b}\)).\(\vec{c}\) = \(|\vec{a}||\vec{b}||\vec{c}|sin\theta …
What is Scalar Triple Product – Properties and Examples Read More »