Solution :
\(\displaystyle{\lim_{x \to 0}}\) \(2(sin(2+x)-sin2)+xsin(2+x)\over x\)
= \(\displaystyle{\lim_{x \to 0}}\)(\(2.2.cos(2+{x\over 2})sin{x\over 2}\over x\) + sin(2+x))
= \(\displaystyle{\lim_{x \to 0}}\)\(2cos(2+{x\over 2})sin{x\over 2}\over {x\over 2}\) + \(\displaystyle{\lim_{x \to 0}}\)sin(2+x)
= 2cos2 + sin2
Similar Questions
Evaluate : \(\displaystyle{\lim_{x \to 0}}\) \(x^3 cotx\over {1-cosx}\)
Evaluate : \(\displaystyle{\lim_{x \to \infty}}\) \(({7x^2+1\over 5x^2-1})^{x^5\over {1-x^3}}\)
Evaluate : \(\displaystyle{\lim_{x \to 0}}\) \(xln(1+2tanx)\over 1-cosx\)
Evaluate the limit : \(\displaystyle{\lim_{x \to \infty}}\) \(x^2 + x + 1\over {3x^2 + 2x – 5}\)