Solution :
\(\displaystyle{\lim_{x \to 0}}\) \(x^3 cosx\over {sinx(1-cosx)}\)
= \(\displaystyle{\lim_{x \to 0}}\) \(x^3 cosx(1 + cosx)\over {sinxsin^2x}\)
= \(\displaystyle{\lim_{x \to 0}}\) \({x^3\over sin^3x}.cosx(1 + cosx)\) = 2
Similar Questions
Evaluate the limit : \(\displaystyle{\lim_{x \to \infty}}\) \(x^2 + x + 1\over {3x^2 + 2x – 5}\)
Evaluate : \(\displaystyle{\lim_{x \to \infty}}\) \(({7x^2+1\over 5x^2-1})^{x^5\over {1-x^3}}\)
Evaluate : \(\displaystyle{\lim_{x \to 0}}\) \(xln(1+2tanx)\over 1-cosx\)
Evaluate : \(\displaystyle{\lim_{x \to 0}}\) \((2+x)sin(2+x)-2sin2\over x\)