Evaluate sin78 – sin66 – sin42 + sin6.

Solution :

The expression = (sin78 – sin42) – (sin66 – sin6)

= 2cos(60)sin(18) – 2cos36.sin30

= sin18 – cos36

= \(({\sqrt{5} – 1\over 4})\) – \(({\sqrt{5} + 1\over 4})\) = -\(1\over 2\)


Similar Questions

Find the maximum value of 1 + \(sin({\pi\over 4} + \theta)\) + \(2cos({\pi\over 4} – \theta)\)

If A + B + C = \(3\pi\over 2\), then cos2A + cos2B + cos2C is equal to

\(sin5x + sin2x – sinx\over {cos5x + 2cos3x + 2cos^x + cosx}\) is equal to

Prove that \(2cos2A+1\over {2cos2A-1}\) = tan(\(60^{\circ}\) + A)tan(\(60^{\circ}\) – A)

Leave a Comment

Your email address will not be published. Required fields are marked *

Ezoicreport this ad