Solution :
\(81^{log_3 5}\) + \(3^{3log_9 36}\) + \(3^{4log_9 7}\)
\(\implies\) \(3^{4log_3 5}\) + \(3^{log_3 {(36)}^{3/2}}\) + \(3^{log_3 {7}^2}\)
= 625 + 216 + 49 = 890.
Similar Questions
Solve for x : \(2^{x + 2}\) > \(({1\over 4})^{1\over x}\).
Find the value of \(2log{2\over 5}\) + \(3log{25\over 8}\) โ \(log{625\over 128}\).
If \(log_a x\) = p and \(log_b {x^2}\) = q then \(log_x \sqrt{ab}\) is equal to