Evaluate the given log : \(81^{l\over {log_5 3}}\) + \(27^{log_9 36}\) + \(3^{4\over {log_7 9}}\).

Solution :

\(81^{log_3 5}\) + \(3^{3log_9 36}\) + \(3^{4log_9 7}\)

\(\implies\) \(3^{4log_3 5}\) + \(3^{log_3 {(36)}^{3/2}}\) + \(3^{log_3 {7}^2}\)

= 625 + 216 + 49 = 890.


Similar Questions

Solve for x : \(2^{x + 2}\) > \(({1\over 4})^{1\over x}\).

Find the value of \(2log{2\over 5}\) + \(3log{25\over 8}\) โ€“ \(log{625\over 128}\).

If \(log_a x\) = p and \(log_b {x^2}\) = q then \(log_x \sqrt{ab}\) is equal to

If \(log_e x\) โ€“ \(log_e y\) = a, \(log_e y\) โ€“ \(log_e z\) = b & \(log_e z\) โ€“ \(log_e x\) = c, then find the value of \(({x\over y})^{b-c}\) \(\times\) \(({y\over z})^{c-a}\) \(\times\) \(({z\over x})^{a-b}\).

Leave a Comment

Your email address will not be published. Required fields are marked *

Ezoicreport this ad