Solution :
\(\displaystyle{\lim_{x \to \infty}}\)\(x^2 + x + 1\over {3x^2 + 2x – 5}\)
It is (\(\infty\over \infty\) form), Put x = \(1\over y\)
= \(\displaystyle{\lim_{y \to 0}}\) \(1 + y + y^2\over {3 + 2y – 5y^2}\) = \(1\over 3\)
Similar Questions
Evaluate : \(\displaystyle{\lim_{x \to 0}}\) \(x^3 cotx\over {1-cosx}\)
Evaluate : \(\displaystyle{\lim_{x \to \infty}}\) \(({7x^2+1\over 5x^2-1})^{x^5\over {1-x^3}}\)
Evaluate : \(\displaystyle{\lim_{x \to 0}}\) \(xln(1+2tanx)\over 1-cosx\)
Evaluate : \(\displaystyle{\lim_{x \to 0}}\) \((2+x)sin(2+x)-2sin2\over x\)