Solution :
We know that \(cosec^2 A\) = 1 + \(cot^2 A\)
\(\implies\) \(1\over sin^2 A\) = 1 + \(cot^2 A\) \(\implies\) \(sin^2 A\) = \(1\over 1 + cot^2 A\)
\(\implies\) sin A = \(1\over \sqrt{1 + cot^2 A}\)
Also, we know that \(sec^2 A\) = 1 + \(tan^2 A\)
\(\implies\) \(sec^2 A\) = 1 + \(1\over cot^2 A\)
\(\implies\) \(sec^2 A\) = \(cot^2 A + 1\over cot^2 A\)
\(\implies\) sec A = \(\sqrt{cot^2 A + 1}\over cot A\)
Also, we know that, tan A = \(1\over cot A\)