Solution :
(2sinx – cosx)(1 + cosx) – (1 – \(cos^2x\)) = 0
\(\therefore\) (1 + cosx)(2sinx – cosx – 1 + cosx) = 0
\(\therefore\) (1 + cosx)(2sinx – 1) = 0
\(\implies\) cosx = -1 or sinx = \(1\over 2\)
\(\implies\) cosx = -1 = cos\(\pi\) \(\implies\) x = 2n\(\pi\) + \(\pi\) = (2n+1)\(\pi\), n \(\in\) I
or sinx = \(1\over 2\) = sin\(\pi\over 6\) \(\implies\) x = k\(\pi + (-1)^k{\pi\over 6}\), k \(\in\) I
Similar Questions
Solve : cos3x + sin2x – sin4x = 0
Solve : 6 – 10cosx = 3\(sin^2x\)
Find the number of solutions of tanx + secx = 2cosx in [0, \(2\pi\)].