Solution :
| A | = \(\begin{vmatrix} 3 & -2 & 4 \\ 1 & 2 & 1 \\ 0 & 1 & -1 \end{vmatrix}\)
By using 3ร3 determinant formula,
\(\implies\) | A | = \(3\begin{vmatrix} 2 & 1 \\ 1 & -1 \end{vmatrix}\) โ \((-2)\begin{vmatrix} 1 & 1 \\ 0 & -1 \end{vmatrix}\) + \(4\begin{vmatrix} 1 & 2 \\ 0 & 1 \end{vmatrix}\)
\(\implies\) | A | = 3(-2 โ 1) + 2(-1 โ 0) + 4(1 โ 0)
= -9 โ 2 + 4 = -7