Solution :
we have, f(x) = \(x-2\over 3-x\)
Domain of f : Clearly f(x) is defined for all x satisfying 3 – x \(\ne\) 0 i.e. x \(\ne\) 3
Hence, Domain of f is R – {3}
Range of f : Let y = f(x), i.e. y = \(x-2\over 3-x\)
\(\implies\) 3y – xy = x – 2
= x(y + 1) = 3y + 2
\(\implies\) x = \(3y + 2\over y + 1\)
Clearly, x assumes real values for all y expect y + 1 = 0 i.e. y = -1
Hence, Range of f is R – {-1}
Similar Questions
If y = 2[x] + 3 & y = 3[x – 2] + 5, then find [x + y] where [.] denotes greatest integer function.
Find the domain of the function f(x) = \(1\over x + 2\).
Find the period of the function f(x) = \(e^{x-[x]+|cos\pi x|+|cos2\pi x|+ ….. + |cosn\pi x|}\)
Find the range of the function \(log_{\sqrt{2}}(2-log_2(16sin^2x+1))\)