Solution :
Equation of tangent to the parabola \(y^2\) = 9x is
y = mx + \(9\over 4m\)
Since it passes through (4,10)
\(\therefore\) 10 = 4m + \(9\over 4m\) \(\implies\) 16\(m^2\) – 40m + 9 = 0
m = \(1\over 4\), \(9\over 4\)
\(\therefore\) Equation of tangent’s are y = \(x\over 4\) + 9 & y = \(9x\over 4\) + 1
Similar Questions
The slope of the line touching both the parabolas \(y^2\) = 4x and \(x^2\) = -32 is
The sum of the slopes of the tangent of the parabola \(y^2\)=4ax drawn from the point (2,3) is
Find the value of k for which the point (k-1, k) lies inside the parabola \(y^2\) = 4x.