Solution :
We have, x = \(a sin^3 t\), y = \(b cos^3 t\)
\(\implies\) \(dx\over dt\) = \(3a sin^2t cos t\) and, \(dy\over dt\) = \(-3b cos^2t sin t\)
\(\therefore\) \(dy\over dx\) = \(dy/dt\over dx/dt\) = \(-b\over a\) \(cos t\over sin t\)
So, the equation of the tangent at the point ‘t’ is
y – \(b cos^3 t\) = (\(dy\over dx\))(x – \(a sin^3 t\))
or, y – \(b cos^3 t\) = \(-b\over a\) \(cos t\over sin t\)(x – \(a sin^3 t\))
or, bx cos t + ay sin t = ab sin t cos t
The equation of the normal at the point ‘t’ is
y – \(b cos^3 t\) = \((-1\over ({dy\over dx})\)(x – \(a sin^3 t\))
or, y – \(b cos^3 t\) = \((-1\over ({-b\over a}{cos t\over sin t})\)(x – \(a sin^3 t\))
or, ax sin t – by cos t = \(a^2 sin^4 t – b^2 cos^4 t\)
Similar Questions
Find the equation of the tangent to curve y = \(-5x^2 + 6x + 7\) at the point (1/2, 35/4).
Find the equation of the normal to the curve y = \(2x^2 + 3 sin x\) at x = 0.
Find the angle between the curves xy = 6 and \(x^2 y\) =12.
Check the orthogonality of the curves \(y^2\) = x and \(x^2\) = y.
The angle of intersection between the curve \(x^2\) = 32y and \(y^2\) = 4x at point (16, 8) is