Find the period of the function f(x) = \(e^{x-[x]+|cos\pi x|+|cos2\pi x|+ ….. + |cosn\pi x|}\)

Solution :

f(x) = \(e^{x-[x]+|cos\pi x|+|cos2\pi x|+ ….. + |cosn\pi x|}\)

Period of x – [x] = 1

Period of \(|cos\pi x|\) = 1

Period of \(|cos2\pi x|\) = \(1\over 2\)

……………………………….

Period of \(|cosn\pi x|\) = \(1\over n\)

So period of f(x) will be L.C.M of all period = 1.


Similar Questions

If y = 2[x] + 3 & y = 3[x – 2] + 5, then find [x + y] where [.] denotes greatest integer function.

Find the domain and range of function f(x) = \(x-2\over 3-x\).

Find the domain of the function f(x) = \(1\over x + 2\).

Find the inverse of the function f(x) = \(log_a(x + \sqrt{(x^2+1)})\); a > 1 and assuming it to be an onto function.

Find the range of the function \(log_{\sqrt{2}}(2-log_2(16sin^2x+1))\)

Leave a Comment

Your email address will not be published. Required fields are marked *

Ezoicreport this ad