Solution :
Now 1 \(\le\) \(16sin^2x\) + 1) \(\le\) 17
0 \(\le\) \(log_2(16sin^2x+1)\) \(\le\) \(log_217\)
2 – \(log_217\) \(\le\) 2 – \(log_2(16sin^2x+1)\) \(\le\) 2
Now consider 0 < 2 – \(log_2(16sin^2x+1)\) \(\le\) 2
-\(\infty\) < \(log_{\sqrt{2}}(2-log_2(16sin^2x+1))\) \(\le\) \(log_{\sqrt{2}}2\) = 2
the range is (-\(\infty\), 2]
Similar Questions
If y = 2[x] + 3 & y = 3[x – 2] + 5, then find [x + y] where [.] denotes greatest integer function.
Find the domain and range of function f(x) = \(x-2\over 3-x\).
Find the period of the function f(x) = \(e^{x-[x]+|cos\pi x|+|cos2\pi x|+ ….. + |cosn\pi x|}\)