Find the range of the function \(log_{\sqrt{2}}(2-log_2(16sin^2x+1))\)

Solution :

Now 1 \(\le\) \(16sin^2x\) + 1) \(\le\) 17

0 \(\le\) \(log_2(16sin^2x+1)\) \(\le\) \(log_217\)

2 – \(log_217\) \(\le\) 2 – \(log_2(16sin^2x+1)\) \(\le\) 2

Now consider 0 < 2 – \(log_2(16sin^2x+1)\) \(\le\) 2

-\(\infty\) < \(log_{\sqrt{2}}(2-log_2(16sin^2x+1))\) \(\le\) \(log_{\sqrt{2}}2\) = 2

the range is (-\(\infty\), 2]


Similar Questions

If y = 2[x] + 3 & y = 3[x – 2] + 5, then find [x + y] where [.] denotes greatest integer function.

Find the domain and range of function f(x) = \(x-2\over 3-x\).

Find the period of the function f(x) = \(e^{x-[x]+|cos\pi x|+|cos2\pi x|+ ….. + |cosn\pi x|}\)

Find the inverse of the function f(x) = \(log_a(x + \sqrt{(x^2+1)})\); a > 1 and assuming it to be an onto function.

Find the domain of the function f(x) = \(1\over x + 2\).

Leave a Comment

Your email address will not be published. Required fields are marked *