Find the value of \(2log{2\over 5}\) + \(3log{25\over 8}\) – \(log{625\over 128}\).

Solution :

\(2log{2\over 5}\) + \(3log{25\over 8}\) + \(log{128\over 625}\)

= \(log{2^2\over 5^2}\) + \(log({5^2\over 2^3})^3\) + \(log{2^7\over 5^4}\)

= \(log({2^2\over 5^2}{5^6\over 2^9}{2^7\over 5^4})\) = log 1 = 0


Similar Questions

Solve for x : \(2^{x + 2}\) > \(({1\over 4})^{1\over x}\).

Evaluate the given log : \(81^{l\over {log_5 3}}\) + \(27^{log_9 36}\) + \(3^{4\over {log_7 9}}\).

If \(log_a x\) = p and \(log_b {x^2}\) = q then \(log_x \sqrt{ab}\) is equal to

If \(log_e x\) – \(log_e y\) = a, \(log_e y\) – \(log_e z\) = b & \(log_e z\) – \(log_e x\) = c, then find the value of \(({x\over y})^{b-c}\) \(\times\) \(({y\over z})^{c-a}\) \(\times\) \(({z\over x})^{a-b}\).

Leave a Comment

Your email address will not be published. Required fields are marked *

Ezoicreport this ad