Solution :
Since, \({1\over 6}sin\theta\), \(cos\theta\) and \(tan\theta\) are in G.P.
\(\implies\) \(cos^2\theta\) = \({1\over 6}sin\theta\).\(cos\theta\)
\(\implies\) \(6cos^3\theta\) + \(cos^2\theta\) – 1 = 0
\(\therefore\) (\(2cos\theta – 1\))(\(3cos^2\theta\) + \(2cos\theta\) + 1) = 0
\(cos\theta\) = \(1\over 2\) (other values are imaginary)
\(cos\theta\) = \(cos\pi\over 3\)
\(\theta\) = \(2n\pi \pm {\pi\over 3}\), n \(\in\) I
Similar Questions
Find the number of solutions of tanx + secx = 2cosx in [0, \(2\pi\)].
Solve : cos3x + sin2x – sin4x = 0
Solve : 6 – 10cosx = 3\(sin^2x\)
Find general solution of (2sinx – cosx)(1 + cosx) = \(sin^2x\)