If A + B + C = \(3\pi\over 2\), then cos2A + cos2B + cos2C is equal to

Solution :

cos2A + cos2B + cos2C = 2cos(A+B)cos(A-B) + cos2C

= 2cos(\(3\pi\over 2\) – C)cos(A-B) + cos2C  \(\because\)  A + B + C = \(3\pi\over 2\)

= -2sinC cos(A-B) + 1 – 2\(sin^2C\) = 1 – 2sinC[cos(A-B)+sinC]

= 1 – 2sinC[cos(A-B) + sin(\(3\pi\over 2\)-(A+B))]

= 1 – 2sinC[cos(A-B)-cos(A+B)]

= 1 – 4sinA sinB sinC


Similar Questions

Evaluate sin78 – sin66 – sin42 + sin6.

Find the maximum value of 1 + \(sin({\pi\over 4} + \theta)\) + \(2cos({\pi\over 4} – \theta)\)

\(sin5x + sin2x – sinx\over {cos5x + 2cos3x + 2cos^x + cosx}\) is equal to

Prove that \(2cos2A+1\over {2cos2A-1}\) = tan(\(60^{\circ}\) + A)tan(\(60^{\circ}\) – A)

Leave a Comment

Your email address will not be published. Required fields are marked *

Ezoicreport this ad