Solution :
6N = {6, 12, 18, 24, 30, …..}
8N = {8, 16, 24, 32, ….}
\(\therefore\) 6N \(\cap\) 8N = {24, 48, …..} = 24N
Similar Questions
If A = {x,y}, then the power set of A is
If A = {2, 4} and B = {3, 4, 5} then (A \(\cap\) B) \(\times\) (A \(\cup\) B)
The set A = [x : x \(\in\) R, \(x^2\) = 16 and 2x = 6] equal