Solution :
\(\displaystyle{\lim_{x \to \infty}}\)(\({x^3+1\over x^2+1}-(ax+b)\)) = 2
\(\implies\) \(\displaystyle{\lim_{x \to \infty}}\)\(x^3(1-a)-bx^2-ax+(1-b)\over x^2+1\) = 2
\(\implies\) \(\displaystyle{\lim_{x \to \infty}}\)\(x(1-a)-b-{a\over x}+{(1-b)\over x^2}\over 1+{1\over x^2}\) = 2
\(\implies\) 1 – a = 0, -b = 2 \(\implies\) a = 1, b = -2
Similar Questions
Evaluate : \(\displaystyle{\lim_{x \to 0}}\) \(x^3 cotx\over {1-cosx}\)
Evaluate : \(\displaystyle{\lim_{x \to \infty}}\) \(({7x^2+1\over 5x^2-1})^{x^5\over {1-x^3}}\)
Evaluate : \(\displaystyle{\lim_{x \to 0}}\) \(xln(1+2tanx)\over 1-cosx\)
Evaluate : \(\displaystyle{\lim_{x \to 0}}\) \((2+x)sin(2+x)-2sin2\over x\)
Evaluate the limit : \(\displaystyle{\lim_{x \to \infty}}\) \(x^2 + x + 1\over {3x^2 + 2x – 5}\)