Solution :
\(log_e x\) – \(log_e y\) = a \(\implies\) \(log_e {x\over y}\) = a \(\implies\) \(x\over y\) = \(e^a\)
\(log_e y\) – \(log_e z\) = b \(\implies\) \(log_e {y\over z}\) = b \(\implies\) \(y\over z\) = \(e^b\)
\(log_e z\) – \(log_e x\) = c \(\implies\) \(log_e {z\over x}\) = c \(\implies\) \(z\over x\) = \(e^c\)
\(\therefore\) \((e^a)^{b-c}\) \(\times\) \((e^b)^{c-a}\) \(\times\) \((e^c)^{a-b}\)
= \(e^{a(b-c)+b(c-a)+c(a-b)}\) = \(e^0\) = 1
Similar Questions
Solve for x : \(2^{x + 2}\) > \(({1\over 4})^{1\over x}\).
Evaluate the given log : \(81^{l\over {log_5 3}}\) + \(27^{log_9 36}\) + \(3^{4\over {log_7 9}}\).
If \(log_a x\) = p and \(log_b {x^2}\) = q then \(log_x \sqrt{ab}\) is equal to
Find the value of \(2log{2\over 5}\) + \(3log{25\over 8}\) – \(log{625\over 128}\).