If the foci of a hyperbola are foci of the ellipse \(x^2\over 25\) + \(y^2\over 9\) = 1. If the eccentricity of the hyperbola be 2, then its equation is :

Solution :

For ellipse e = \(4\over 5\), so foci = (\(\pm\)4, 0)

for hyperbola e = 2, so a = \(ae\over e\) = \(4\over 2\) = 2, b = \(2\sqrt{4-1}\) = 2\(\sqrt{3}\)

Hence the equation of the hyperbola is \(x^2\over 4\) โ€“ \(y^2\over 12\) = 1


Similar Questions

Find the equation of the ellipse whose axes are along the coordinate axes, vertices are \((0, \pm 10)\) and eccentricity e = 4/5.

The foci of an ellipse are \((\pm 2, 0)\) and its eccentricity is 1/2, find its equation.

Find the equation of the tangents to the ellipse \(3x^2+4y^2\) = 12 which are perpendicular to the line y + 2x = 4.

For what value of k does the line y = x + k touches the ellipse \(9x^2 + 16y^2\) = 144.

Find the equation of ellipse whose foci are (2, 3), (-2, 3) and whose semi major axis is of length \(\sqrt{5}\).

Leave a Comment

Your email address will not be published. Required fields are marked *

Ezoicreport this ad