Solution :
\(\vec{a}\times\vec{b}\) = \(\vec{c}\) and \(\vec{b}\times\vec{c}\) = \(\vec{a}\)
\(\implies\) \(\vec{c}\perp\vec{a}\) , \(\vec{c}\perp\vec{b}\) and \(\vec{a}\perp\vec{b}\), \(\vec{a}\perp\vec{c}\)
\(\implies\) \(\vec{a}\perp\vec{b}\), \(\vec{b}\perp\vec{c}\) and \(\vec{c}\perp\vec{a}\)
\(\implies\) \(\vec{a}\), \(\vec{b}\), \(\vec{c}\) are mutually perpendicular vectors.
Again, \(\vec{a}\times\vec{b}\) = \(\vec{c}\) and \(\vec{b}\times\vec{c}\) = \(\vec{a}\)
\(\implies\) |\(\vec{a}\times\vec{b}\)| = |\(\vec{c}\)| and |\(\vec{b}\times\vec{c}\)| = |\(\vec{a}\)|
\(\implies\) \(|\vec{a}||\vec{b}|sin{\pi\over 2}\) = |\(\vec{c}\)| and \(|\vec{b}||\vec{c}|sin{\pi\over 2}\) = |\(\vec{a}\)| (\(\because\) \(\vec{a}\perp\vec{b}\) and \(\vec{b}\perp\vec{c}\))
\(\implies\) \(|\vec{a}||\vec{b}|\) = |\(\vec{c}\)| and \(|\vec{b}||\vec{c}|\) = |\(\vec{a}\)|
\(\implies\) \({|\vec{b}|}^2\) |\(\vec{c}\)| = |\(\vec{c}\)|
\(\implies\) \({|\vec{b}|}^2\) = 1
\(\implies\) \(|\vec{b}|\) = 1
putting in \(|\vec{a}||\vec{b}|\) = |\(\vec{c}\)|
\(\implies\) \(|\vec{a}|\) = |\(\vec{c}\)|
Similar Questions
Find the angle between the vectors with the direction ratios proportional to 4, -3, 5 and 3, 4, 5.
Find the vector equation of a line which passes through the point A (3, 4, -7) and B (1, -1, 6)