Integration of Cos Inverse x

Here you will learn proof of integration of cos inverse x or arccos x and examples based on it.

Letโ€™s begin โ€“

Integration of Cos Inverse x

The integration of cos inverse x or arccos x is \(xcos^{-1}x\) โ€“ \(\sqrt{1 โ€“ x^2}\) + C

Where C is the integration constant.

i.e. \(\int\) \(cos^{-1}x\) = \(xcos^{-1}x\) โ€“ \(\sqrt{1 โ€“ x^2}\) + C

Proof :ย 

We have, I = \(\int\) \(cos^{-1}x\) dx

Let \(cos^{-1}x\) = t,

Then, x = cos t

\(\implies\) dx = d(cos t) = -sin t dt

\(\therefore\) I = \(\int\) \(cos^{-1}x\) dx

\(\implies\) I = \(\int\) -t sint dt

By using integration by parts formula,

I = t cos t + \(\int\) 1. (-cos t) dt

I = t cos t โ€“ \(\int\) cost dt

= t cos t โ€“ sin t + C

= t cos t โ€“ \(\sqrt{1 โ€“ cos^2 t}\) + C

Now, Put t = \(cos^{-1}x\) here

\(\implies\) I = x \(cos^{-1}x\) โ€“ \(\sqrt{1 โ€“ x^2}\) + C

Hence, \(\int\) \(cos^{-1}x\) dx = x \(cos^{-1}x\) โ€“ \(\sqrt{1 โ€“ x^2}\) + C

Example : Evaluate \(\int\) \(x cos^{-1} x\) dx

Solution : We have,

I = \(\int\)ย  \(x cos^{-1} x\) dx

By using integration by parts formula,

I = \(cos^{-1} x\) \(x^2\over 2\) โ€“ \(\int\) \(-1\over \sqrt{1 โ€“ x^2}\) \(\times\) \(x^2\over 2\) dx

I =ย  \(x^2\over 2\) \(cos^{-1} x\) โ€“ \(1\over 2\) \(\int\) \(-x^2\over \sqrt{1 โ€“ x^2}\) dx

= \(x^2\over 2\) \(cos^{-1} x\) โ€“ \(1\over 2\) \(\int\) \(1 โ€“ x^2 โ€“ 1\over \sqrt{1 โ€“ x^2}\)ย  dx

= \(x^2\over 2\) \(cos^{-1} x\) โ€“ \(1\over 2\) { \(\int\) \(1 โ€“ x^2\over \sqrt{1 โ€“ x^2}\) โ€“ \(\int\) \(1\over \sqrt{1 -x^2}\) } dx

\(\implies\) I = \(x^2\over 2\) \(cos^{-1} x\) โ€“ \(1\over 2\) { \(\int\) \(\sqrt{1 โ€“ x^2}\) โ€“ \(\int\) \(1\over \sqrt{1 -x^2}\) } dx

By using integration formula of \(\sqrt{a^2 โ€“ x^2}\),

\(\implies\) I = \(x^2\over 2\) \(cos^{-1} x\) โ€“ \(1\over 2\) [{ \(1\over 2\) \(x\sqrt{1 โ€“ x^2}\) โ€“ \(1\over 2\) \(sin^{-1} x\) } โ€“ \(sin ^{-1} x\) ] + C

\(\implies\) I = \(x^2\over 2\) \(cos^{-1} x\) โ€“ย  \(1\over 4\) \(x\sqrt{1 โ€“ x^2}\) + \(3\over 4\) \(sin^{-1} x\) + C


Related Questions

What is the Differentiation of cos inverse x ?

What is the Integration of cos x ?

What is the integration of cos inverse root x ?

Leave a Comment

Your email address will not be published. Required fields are marked *

Ezoicreport this ad