Here you will learn some limits examples for better understanding of limit concepts.
Example 1 : If \(\displaystyle{\lim_{x \to \infty}}\)(\({x^3+1\over x^2+1}-(ax+b)\)) = 2, then find the value of a and b.
Solution : \(\displaystyle{\lim_{x \to \infty}}\)(\({x^3+1\over x^2+1}-(ax+b)\)) = 2
\(\implies\) \(\displaystyle{\lim_{x \to \infty}}\)\(x^3(1-a)-bx^2-ax+(1-b)\over x^2+1\) = 2
\(\implies\) \(\displaystyle{\lim_{x \to \infty}}\)\(x(1-a)-b-{a\over x}+{(1-b)\over x^2}\over 1+{1\over x^2}\) = 2
\(\implies\) 1 โ a = 0, -b = 2 \(\implies\) a = 1, b = -2
Example 2 : Evaluate : \(\displaystyle{\lim_{x \to 0}}\) \((2+x)sin(2+x)-2sin2\over x\)
Solution : \(\displaystyle{\lim_{x \to 0}}\) \(2(sin(2+x)-sin2)+xsin(2+x)\over x\)
= \(\displaystyle{\lim_{x \to 0}}\)(\(2.2.cos(2+{x\over 2})sin{x\over 2}\over x\) + sin(2+x))
= \(\displaystyle{\lim_{x \to 0}}\)\(2cos(2+{x\over 2})sin{x\over 2}\over {x\over 2}\) + \(\displaystyle{\lim_{x \to 0}}\)sin(2+x)
= 2cos2 + sin2
Example 3 : Evaluate : \(\displaystyle{\lim_{x \to 0}}\) \(xln(1+2tanx)\over 1-cosx\)
Solution : \(\displaystyle{\lim_{x \to 0}}\) \(xln(1+2tanx)\over 1-cosx\)
= \(\displaystyle{\lim_{x \to 0}}\) \(xln(1+2tanx)\over {1-cosx\over x^2}.x^2\).\(2tanx\over 2tanx\)
= 4
Example 4 : Evaluate : \(\displaystyle{\lim_{x \to \infty}}\) \(({7x^2+1\over 5x^2-1})^{x^5\over {1-x^3}}\)
Solution : Here f(x) = \({7x^2+1\over 5x^2-1}\)
\(\phi\)(x) = \({x^5\over {1-x^3}}\) = \(x^2x^3\over 1-x^3\) = \(x^2\over {1\over x^3}-1\)
\(\therefore\) ย ย \(\displaystyle{\lim_{x \to \infty}}\) f(x) = \(7\over 5\)ย ย & ย ย \(\displaystyle{\lim_{x \to \infty}}\) \(\phi\)(x) \(\rightarrow\) โ \(\infty\)
\(\implies\) \(\displaystyle{\lim_{x \to \infty}}\) \((f(x))^{\phi (x)}\) = \(({7\over 5})^{-\infty}\) = 0
Practice these given limits examples to test your knowledge on concepts of limits.