Find the inflection point of f(x) = \(3x^4 โ 4x^3\).
Solution : f(x) = \(3x^4 โ 4x^3\) f'(x) = \(12x^3 โ 12x^2\) f'(x) = \(12x^2(x โ 1)\) Now, fโ(x) = \(12(3x^2 โ 2x)\) fโ(x) = 12x(3x โ 2) fโ(x) = 0ย \(\implies\)ย x = 0, 2/3 Here, fโ(x) = 0 Thus, x = 0, 2/3 are the inflection points. Similar Questions Prove that the function โฆ
Find the inflection point of f(x) = \(3x^4 โ 4x^3\). Read More ยป