Evaluate the limit : \(\displaystyle{\lim_{x \to \infty}}\) \(x^2 + x + 1\over {3x^2 + 2x – 5}\)
Solution : \(\displaystyle{\lim_{x \to \infty}}\)\(x^2 + x + 1\over {3x^2 + 2x – 5}\) It is (\(\infty\over \infty\) form), Put x = \(1\over y\) = \(\displaystyle{\lim_{y \to 0}}\) \(1 + y + y^2\over {3 + 2y – 5y^2}\) = \(1\over 3\) Similar Questions Evaluate : \(\displaystyle{\lim_{x \to 0}}\) \(x^3 cotx\over {1-cosx}\) Evaluate : \(\displaystyle{\lim_{x \to …