Find the maximum value of 1 + \(sin({\pi\over 4} + \theta)\) + \(2cos({\pi\over 4} – \theta)\)
Solution : We have 1 + \(sin({\pi\over 4} + \theta)\) + \(2cos({\pi\over 4} – \theta)\) = 1 + \(1\over sqrt{2}\)\((cos\theta + cos\theta)\) + \(\sqrt{2}\)\((cos\theta + cos\theta)\) = 1 + \(({1\over \sqrt{2}} + \sqrt{2})\) + \((cos\theta + cos\theta)\) = 1 + \(({1\over \sqrt{2}} + \sqrt{2})\).\(\sqrt{2}cos(\theta – {pi\over 4})\) \(\therefore\) Maximum Value = 1 + \(({1\over \sqrt{2}} …