A fair die is tossed eight times. The probability that a third six is observed on the eight throw, is
Solution : Probability of getting success, p = \(1\over 6\) and probability of failure, q = \(5\over 6\) Now, we must get 2 sixes in seven throws, so probability is \(^7C_2\)\(({1\over 6})^2\)\(({5\over 6})^5\) and the probability that 8th throw is \(1\over 6\). \(\therefore\) Required Probability = \(^7C_2\)\(({1\over 6})^2\)\(({5\over 6})^5\)\(1\over 6\) = \(^7C_2\times 5^5\over {6^8}\) Similar …