Solution : \(\vec{a}\times\vec{b}\) = \(\vec{c}\) and \(\vec{b}\times\vec{c}\) = \(\vec{a}\) \(\implies\) \(\vec{c}\perp\vec{a}\) , \(\vec{c}\perp\vec{b}\) and \(\vec{a}\perp\vec{b}\), \(\vec{a}\perp\vec{c}\) \(\implies\) \(\vec{a}\perp\vec{b}\), \(\vec{b}\perp\vec{c}\) and \(\vec{c}\perp\vec{a}\) \(\implies\) \(\vec{a}\), \(\vec{b}\), \(\vec{c}\) are mutually perpendicular vectors. Again, \(\vec{a}\times\vec{b}\) = \(\vec{c}\) and \(\vec{b}\times\vec{c}\) = \(\vec{a}\) \(\implies\) |\(\vec{a}\times\vec{b}\)| = |\(\vec{c}\)| and |\(\vec{b}\times\vec{c}\)| = |\(\vec{a}\)| \(\implies\) \(|\vec{a}||\vec{b}|sin{\pi\over 2}\) = |\(\vec{c}\)| and \(|\vec{b}||\vec{c}|sin{\pi\over 2}\) = |\(\vec{a}\)| …
If \(\vec{a}\), \(\vec{b}\), \(\vec{c}\) are three non zero vectors such that \(\vec{a}\times\vec{b}\) = \(\vec{c}\) and \(\vec{b}\times\vec{c}\) = \(\vec{a}\), prove that \(\vec{a}\), \(\vec{b}\), \(\vec{c}\) are mutually at right angles and |\(\vec{b}\)| = 1 and |\(\vec{c}\)| = |\(\vec{a}\)| Read More »