If A + B + C = \(3\pi\over 2\), then cos2A + cos2B + cos2C is equal to
Solution : cos2A + cos2B + cos2C = 2cos(A+B)cos(A-B) + cos2C = 2cos(\(3\pi\over 2\) – C)cos(A-B) + cos2C \(\because\) A + B + C = \(3\pi\over 2\) = -2sinC cos(A-B) + 1 – 2\(sin^2C\) = 1 – 2sinC[cos(A-B)+sinC] = 1 – 2sinC[cos(A-B) + sin(\(3\pi\over 2\)-(A+B))] = 1 – 2sinC[cos(A-B)-cos(A+B)] = 1 – 4sinA sinB sinC …
If A + B + C = \(3\pi\over 2\), then cos2A + cos2B + cos2C is equal to Read More »