Find the inverse of the function f(x) = \(log_a(x + \sqrt{(x^2+1)})\); a > 1 and assuming it to be an onto function.
Solution : Given f(x) = \(log_a(x + \sqrt{(x^2+1)})\) f'(x) = \(log_ae\over {\sqrt{1+x^2}}\) > 0 which is strictly increasing functions. Thus, f(x) is injective, given that f(x) is onto. Hence the given function f(x) is invertible. Interchanging x & y \(\implies\) \(log_a(y + \sqrt{(y^2+1)})\) = x \(\implies\) \(y + \sqrt{(y^2+1)}\) = \(a^x\) ……..(1) and \(\sqrt{(y^2+1)}\) – …