If mean of the series \(x_1\), \(x^2\), โฆ.. , \(x_n\) is \(\bar{x}\), then the mean of the series \(x_i\) + 2i, i = 1, 2, โฆโฆ, n will be
Solution : As given \(\bar{x}\) = \(x_1 + x_2 + โฆ. + x_n\over n\) If the mean of the series \(x_i\) + 2i, i = 1, 2, โฆ.., n be \(\bar{X}\), then \(\bar{X}\) = \((x_1+2) + (x_2+2.2) + (x_3+2.3) + โฆ. + (x_n + 2.n)\over n\) = \(x_1 + x_2 + โฆ. + x_n\over n\) โฆ