What is the General Solution of \(tan \theta\) = \(tan \alpha\) ?
Solution : The general solution of \(tan \theta\) = \(tan \alpha\) is given by \(\theta\) = \(n\pi + \alpha\), n \(\in\) Z. Proof : We have, \(tan \theta\) = \(tan \alpha\) \(\implies\) \(sin \theta\over cos \theta\) = \(sin \alpha\over cos \alpha\) \(\implies\) \(sin \theta cos \alpha\) – \(cos \theta sin \alpha\) = 0 \(\implies\) \(sin …
What is the General Solution of \(tan \theta\) = \(tan \alpha\) ? Read More »