Trigonometry Questions

Prove the following identities, where the angles involved are acute angles for which the expressions are defined :

Question : (i)  \(1 โ€“ cos\theta\over 1 + cos\theta\) = \(({cosec\theta โ€“ cot\theta})^2\) (ii)  \(1 + sin\theta\over cos\theta\) + \(cos\theta\over 1 + sin\theta\) = \(2sec\theta\) (iii)  \(tan\theta\over 1 โ€“ cot\theta\) + \(cot\theta\over 1 โ€“ tan\theta\) = \(sec\theta + cosec\theta\) + 1 (iv)  \(1 + sec\theta\over sec\theta\) = \(sin^2\theta\over 1 โ€“ cos\theta\) (v)  \(cos A โ€“ โ€ฆ

Prove the following identities, where the angles involved are acute angles for which the expressions are defined : Read More ยป

Evaluate :

Question : Evaluate : (i)  \(sin^2 63 + sin^2 27\over cos^2 17 + cos^2 73\) (ii) sin 25 cos 65 + cos 25 sin 65 Solution : (i)  \(sin^2 63 + sin^2 27\over cos^2 17 + cos^2 73\) = \(sin^2 (90 โ€“ 27) + sin^2 27\over cos^2 17 + cos^2 (90 โ€“ 17)\) = \(cos^2 โ€ฆ

Evaluate : Read More ยป

Write the other trigonometric ratios of A in terms of sec A.

Solution : Consider a triangle ABC, in which \(\angle\) B = 90 For \(\angle\) A, we have : Base = AB, Perp = BC and Hyp = AC \(\therefore\)    sec A = \(Hyp\over Base\) = \(AC\over AB\) So,  \(AC\over AB\)  = sec A = \(sec A\over 1\) Let AB = k and AC = โ€ฆ

Write the other trigonometric ratios of A in terms of sec A. Read More ยป

Express the trigonometric ratios sin A, sec A, and tan A in terms of cot A.

Solution : We know that   \(cosec^2 A\) = 1 + \(cot^2 A\) \(\implies\)   \(1\over sin^2 A\) = 1 + \(cot^2 A\)   \(\implies\)  \(sin^2 A\) = \(1\over 1 + cot^2 A\) \(\implies\)  sin A = \(1\over \sqrt{1 + cot^2 A}\) Also,  we know that  \(sec^2 A\) = 1 + \(tan^2 A\) \(\implies\)  \(sec^2 A\) = 1 โ€ฆ

Express the trigonometric ratios sin A, sec A, and tan A in terms of cot A. Read More ยป

Express sin 67 + cos 75 in terms of trigonometric ratios of angles between 0 and 45.

Solution : We have, sin 67 + cos 75 = sin(90 โ€“ 23) + cos(90 โ€“ 15) = cos 23 + sin 15

If A, B and C are the interior angles of a triangle ABC, show that sin\(B+C\over 2\) = cos\(A\over 2\).

Solution : Since A, B and C are the interior angles of a triangle ABC \(\therefore\)   A + B + C = 180 \(\implies\)  \(A\over 2\) + \(B\over 2\) + \(C\over 2\) = 90 \(\implies\)  \(B\over 2\) + \(C\over 2\) = 90 โ€“ \(A\over 2\) \(\implies\)  sin(\(B+C\over 2\)) = sin(90 โ€“ \(A\over 2\)) \(\implies\)   sin\(B+C\over โ€ฆ

If A, B and C are the interior angles of a triangle ABC, show that sin\(B+C\over 2\) = cos\(A\over 2\). Read More ยป

If tan A = cot B, prove that A + B = 90.

Solution : We have,  tan A = cot B \(\implies\)  tan A = tan(90 โ€“ B) \(\implies\)  A = 90 โ€“ B \(\implies\)  A + B = 90

Ezoicreport this ad