If cot \(\theta\) = \(7\over 8\), evaluate : (i) \({(1 + sin\theta)(1 – sin\theta)}\over {(1 + cos\theta)(1 – cos\theta)}\) (ii) \(cot^2 \theta\)
Solution : (i) In \(\triangle\) ABC, \(cot \theta\) = \(7\over 8\) = \(AB\over BC\) Let AB = 7k and BC = 8k Now, AC = \(\sqrt{{AB}^2 + {BC}^2}\) = \(\sqrt{113k^2}\) So, AC = \(\sqrt{113}k\) Thus, \(sin \theta\) = \(8k\over \sqrt{113}k\) = \(8\over \sqrt{113}\) \(cos \theta\) = \(7k\over \sqrt{113}k\) = \(7\over \sqrt{113}\) Now, \({(1 + sin\theta)(1 …