Prove that \(f(\theta)\) = \({4sin \theta\over 2 + cos\theta} – \theta\) is an increasing function of \(\theta\) in \([0, {\pi\over 2}]\).
Solution : We have, \(f(\theta)\) = \({4sin \theta\over 2 + cos\theta} – \theta\) \(\implies\) \(f'(\theta)\) = \((2 + cos\theta)(4 cos\theta) + 4 sin^2\theta\over (2 + cos\theta)^2\) – 1 \(\implies\) \(f'(\theta)\) = \(8 cos\theta + 4\over (2 + cos\theta)^2\) – 1 \(\implies\) \(f'(\theta)\) = \(4\cos\theta – cos^2\theta\over (2 + cos\theta)^2\) \(\implies\) \(f'(\theta)\) = \(cos\theta(4 – cos\theta)\over …