Prove that : \(cos^{-1}{12\over 13}\) + \(sin^{-1}{3\over 5}\) = \(sin^{-1}{56\over 65}\)

Solution :

We have, L.H.S. = \(cos^{-1}{12\over 13}\) + \(sin^{-1}{3\over 5}\) = \(tan^{-1}{5\over 12}\) + \(tan^{-1}{3\over 4}\)

\(\because\) [ \(cos^{-1}{12\over 13}\) = \(tan^{-1}{5\over 12}\) & \(sin^{-1}{3\over 5}\) = \(tan^{-1}{3\over 4}\) ]

L.H.S. = \(tan^{-1}({{{5\over 12} + {3\over 4}}\over {1 – {5\over 12}.{3\over 4}}})\) = \(tan^{-1}{56\over 33}\)

R.H.S. = \(sin^{-1}{56\over 65}\) = \(tan^{-1}{56\over 33}\)

L.H.S = R.H.S.  Hence Proved.


Similar Questions

Solve the equation : 2\(tan^{-1}({2x+1})\) = \(cos^{-1}x\)

Prove that : \(sin^{-1}{12\over 13}\) + \(cot^{-1}{4\over 3}\) + \(tan^{-1}{63\over 16}\) = \(\pi\)

Evaluate \(sin^{-1}(sin10)\)

The value of \(tan^{-1}(1)\) + \(cos^{-1}({-1\over 2})\) + \(sin^{-1}({-1\over 2})\) is equal to

Find the value of \(sin^{-1}({-\sqrt{3}\over 2})\) + \(cos^{-1}(cos({7\pi\over 6}))\).

Leave a Comment

Your email address will not be published. Required fields are marked *

Ezoicreport this ad