Solution :
We have, \(sin^{-1}{12\over 13}\) + \(cot^{-1}{4\over 3}\) + \(tan^{-1}{63\over 16}\)
= \(tan^{-1}{12\over 5}\) + \(tan^{-1}{3\over 4}\) + \(tan^{-1}{63\over 16}\)
= \(\pi\) + \(tan^{-1}({{{12\over 5} + {3\over 4}}\over {1 – {12\over 5} \times {3\over 4}}})\) + \(tan^{-1}{63\over 16}\)
= \(\pi\) + \(tan^{-1}{63\over (-16)}\) + \(tan^{-1}{63\over 16}\)
= \(\pi\) – \(tan^{-1}{63\over 16}\) + \(tan^{-1}{63\over 16}\)
= \(\pi\)
Similar Questions
Solve the equation : 2\(tan^{-1}({2x+1})\) = \(cos^{-1}x\)
The value of \(tan^{-1}(1)\) + \(cos^{-1}({-1\over 2})\) + \(sin^{-1}({-1\over 2})\) is equal to
Prove that : \(cos^{-1}{12\over 13}\) + \(sin^{-1}{3\over 5}\) = \(sin^{-1}{56\over 65}\)
Find the value of \(sin^{-1}({-\sqrt{3}\over 2})\) + \(cos^{-1}(cos({7\pi\over 6}))\).