Solution :
we have, cos3x + (sin2x – sin4x) = 0
= cos3x – 2sinx.cos3x = 0
\(\implies\) (cos3x)(1 – 2sinx) = 0
\(\implies\) cos3x = 0 or sinx = \(1\over 2\)
\(\implies\) cos3x = 0 = cos\(\pi\over 2\) or sinx = \(1\over 2\) = sin\(\pi\over 6\)
\(\implies\) 3x = 2n\(\pi\) \(\pm\) \(\pi\over 2\) or x = m\(\pi\) + \({(-1)}^m\)\(\pi\over 6\)
\(\implies\) x = \(2n\pi\over 3\) \(\pm\) \(\pi\over 6\) or x = m\(\pi\) + \({(-1)}^m\)\(\pi\over 6\); (n, m \(\in\) I)
Similar Questions
Find the number of solutions of tanx + secx = 2cosx in [0, \(2\pi\)].
Solve : 6 – 10cosx = 3\(sin^2x\)
Find general solution of (2sinx – cosx)(1 + cosx) = \(sin^2x\)